热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

AI英雄|英特尔戴金权:人工智能的“软硬结合”

出品|网易智能(公众号smartman163)栏目|AI英雄2019年全球人工智能与机器人峰会(CCF-GAIR)在深圳举办

640?wx_fmt=png

640?wx_fmt=png


出品 | 网易智能(公众号 smartman163)

栏目 | AI英雄


2019年全球人工智能与机器人峰会(CCF-GAIR)在深圳举办。英特尔高级首席工程师、大数据技术全球CTO 戴金权发表了题为《统一的数据分析及AI 驱动大规模业务洞察》的演讲,阐述了英特尔超异构计算的理念和软硬件协同创新的AI发展思路。

 

640?wx_fmt=png


AI生产化部署的新方法

 

戴金权在演讲中谈到,人工智能并非单一的工作负载,而是一种广泛的、能够强化所有应用性能的强大能力,而人工智能从实验室到落地需要统一的数据分析流水线。

 

“我们已经进入以数据为中心的世界,今天90%以上的数据是在过去几年中产生的,其中大概50%是在过去两年中产生,虽然说我们已经进入人工智能时代,但事实上大概只有2%的数据真正得到了分析,并且对生产和生活起到帮助。”戴金权谈及数据处理的行业现状。

 640?wx_fmt=jpeg


究其原因,他认为大规模的人工智能应用还非常困难,不管从复杂性、成本、可拓展性等方面都是如此,把深度学习的算法从实验室搬到现实的生产环境中是需要考虑很多东西,从数据的收集、管理、清洗、特征提取、模型训练、推理,整合到分析的数据流,包括对整个集群的架构、服务等等各种管理。

 

戴金权表示,在这个过程中你需要有数据管理的部分,数据分析的部分,以及各种机器学习、深度学习、人工智能算法的部分,如何将这些不同的独立的框架整合到流水线里,将你的数据存储、清洗、分析、可视化变成一个统一的端到端解决方案,这有非常多的技术难题。

 

“BigDL是一个建立在大数据平台(Hadoop/Spark)之上原生的分布式深度学习库,它提供了在Apache Spark上丰富的深度学习功能,以帮助 Hadoop/Spark成为一个统一的数据分析平台。在这个基础上,我们去年又开源了Analytics Zoo项目,它是基于Apache Spark、TensorFlow这些底层上更高阶的人工智能的流水线和平台,旨在加速大数据加上人工智能这个应用的创新以及更快的落地。”他阐述了英特尔的全栈软件方案。


640?wx_fmt=jpeg


此外,戴金权在会后的访谈中告诉网易智能,英特尔做的就是希望通过Analytics Zoo平台,帮助用户无缝从笔记本的生产原型扩展到集群或生产化部署。“这是我们和其他人不同的地方,也是我们的优势”。

 

640?wx_fmt=png


硬件趋于异构软件趋于统一

 

资料显示,英特尔预计,数据中心AI芯片的总体潜在市场规模(TAM)正以25%的复合年增长率(CAGR)增长,预计到2023年将达到100亿美元。

 

此前,英特尔提道,现在已经从以晶体管为中心转移到以数据为中心,单一因素不足以满足多元化的未来计算需求。英特尔认为只有六大技术支柱带来的融合创新才能应对未来数据的多样化、数据量的爆发式增长,还有处理方式的多样性。这六大技术支柱是制程和封装、架构、内存和存储、互连、安全、软件,它们是互相相关、紧密耦合。

 

在制程和封装层面,没有单个的芯片类型可以成为所有工作负载的最优解。英特尔把不同的小芯片,甚至是不同的核心连接起来,让单片SoC实现性能、功耗和成本的最佳组合。

 

在架构层面,提供标量、矢量、矩阵和空间的多种架构组合,部署在CPU、GPU、FPGA和加速器套件之中。


640?wx_fmt=png


此外,内存和存储配备指数级的内存层级架构。互连方面,从片上、封装内互连、处理器间互连、数据中心互连到无线互连。安全也是其中的重中之重。

 

值得一提的是软件层面,英特尔有1.5万名软件工程师,他们的“One API”项目就是旨在简化跨CPU、GPU、FPGA、人工智能和其它加速器的各种计算引擎的编程。

 

未来几年,AI模型的复杂性以及对大规模深度学习计算的需求将爆发式增长。AI正在走向一个异构的世界。概况来说,英特尔在AI时代新的方法论概括起来就是:AI硬件趋于异构,软件趋于统一,最后一定是软硬件的综合体。

 

640?wx_fmt=png


640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png

- 加入社群吧 -

640?wx_fmt=png

640?wx_fmt=png



推荐阅读
  • 英特尔推出第三代至强可扩展处理器及傲腾持久内存,AI性能显著提升
    英特尔在数据创新峰会上发布了第三代至强可扩展处理器和第二代傲腾持久内存,全面增强AI能力和系统性能。 ... [详细]
  • 本文由公众号【数智物语】(ID: decision_engine)发布,关注获取更多干货。文章探讨了从数据收集到清洗、建模及可视化的全过程,介绍了41款实用工具,旨在帮助数据科学家和分析师提升工作效率。 ... [详细]
  • 如何高效学习鸿蒙操作系统:开发者指南
    本文探讨了开发者如何更有效地学习鸿蒙操作系统,提供了来自行业专家的建议,包括系统化学习方法、职业规划建议以及具体的开发技巧。 ... [详细]
  • 精选10款Python框架助力并行与分布式机器学习
    随着神经网络模型的不断深化和复杂化,训练这些模型变得愈发具有挑战性,不仅需要处理大量的权重,还必须克服内存限制等问题。本文将介绍10款优秀的Python框架,帮助开发者高效地实现分布式和并行化的深度学习模型训练。 ... [详细]
  • Web3隐私协议Manta Network与区块链互操作性平台Axelar达成战略合作,共同推进跨链资产的隐私保护。 ... [详细]
  • 本文探讨了Flutter和Angular这两个流行框架的主要区别,包括它们的设计理念、适用场景及技术实现。 ... [详细]
  • 时序数据是指按时间顺序排列的数据集。通过时间轴上的数据点连接,可以构建多维度报表,揭示数据的趋势、规律及异常情况。 ... [详细]
  • 构建高性能Feed流系统的设计指南
    随着移动互联网的发展,Feed流系统成为了众多社交应用的核心组成部分。本文将深入探讨如何设计一个高效、稳定的Feed流系统,涵盖从基础架构到高级特性的各个方面。 ... [详细]
  • Quick BI是一款专为云计算环境设计的高级数据分析与可视化解决方案,旨在帮助企业和组织实现从传统数据处理模式到现代云端数据管理的无缝过渡。本文将深入探讨Quick BI在数据可视化方面的独特功能及其发展历程。 ... [详细]
  • 吴石访谈:腾讯安全科恩实验室如何引领物联网安全研究
    腾讯安全科恩实验室曾两次成功破解特斯拉自动驾驶系统,并远程控制汽车,展示了其在汽车安全领域的强大实力。近日,该实验室负责人吴石接受了InfoQ的专访,详细介绍了团队未来的重点方向——物联网安全。 ... [详细]
  • 本周三大青年学术分享会即将开启
    由雷锋网旗下的AI研习社主办,旨在促进AI领域的知识共享和技术交流。通过邀请来自学术界和工业界的专家进行在线分享,活动致力于搭建一个连接理论与实践的平台。 ... [详细]
  • Python 领跑!2019年2月编程语言排名更新
    根据最新的编程语言流行指数(PYPL)排行榜,Python 在2019年2月的份额达到了26.42%,稳坐榜首位置。 ... [详细]
  • 2017年软件开发领域的七大变革
    随着技术的不断进步,2017年对软件开发人员而言将充满挑战与机遇。本文探讨了开发人员需要适应的七个关键变化,包括人工智能、聊天机器人、容器技术、应用程序版本控制、云测试环境、大众开发者崛起以及系统管理的云迁移。 ... [详细]
  • 5G时代的广域网革新:企业迈向万物智联的新起点
    随着2020年初“新基建”概念的提出,以5G、AI、IoT等为核心的新型基础设施建设正逐步改变企业的运营模式。本文探讨了在这一背景下,企业广域网(WAN)如何通过5G与SD-WAN技术的融合实现转型升级,成为推动企业智能化、数字化发展的关键力量。 ... [详细]
  • 初探Hadoop:第一章概览
    本文深入探讨了《Hadoop》第一章的内容,重点介绍了Hadoop的基本概念及其如何解决大数据处理中的关键挑战。 ... [详细]
author-avatar
shao4224
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有